

Beating the Defense: Using Plan Recognition to Inform Learning Agents

Matthew Molineaux1, David W. Aha2, & Gita Sukthankar3

1Knexus Research Corporation, Springfield, VA, 22153
2Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory (Code 5514); Washington, DC 20375

3School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816
david.aha@nrl.navy.mil | matthew.molineaux@knexusresearch.com | gitars@eecs.ucf.edu

Abstract
In this paper, we investigate the hypothesis that plan recog-
nition can significantly improve the performance of a case-
based reinforcement learner in an adversarial action selec-
tion task. Our environment is a simplification of an Ameri-
can football game. The performance task is to control the
behavior of a quarterback in a pass play, where the goal is to
maximize yardage gained. Plan recognition focuses on pre-
dicting the play of the defensive team. We modeled plan
recognition as an unsupervised learning task, and conducted
a lesion study. We found that plan recognition was accurate,
and that it significantly improved performance. More gener-
ally, our studies show that plan recognition reduced the di-
mensionality of the state space, which allowed learning to be
conducted more effectively. We describe the algorithms, ex-
plain the reasons for performance improvement, and also de-
scribe a further empirical comparison that highlights the util-
ity of plan recognition for this task.

1. Motivation and Contributions
Large state spaces pose a challenge for reinforcement
learning (RL) algorithms due to the amount of data re-
quired to develop accurate action-selection policies. For
example, when using the observed state variables, the per-
formance task that we analyze in this paper has a large
state space (4.3*109), which is common for adversarial
multiagent environments. Due to this and other characteris-
tics of our task, if we used a simple Q-learning algorithm,
then learning an accurate policy would require an inordi-
nately large (and practically infeasible) number of trials.

Case-based reasoning (CBR) methods are an attractive
approach for solving this problem because they assume
that the same (or similar) actions are best performed
among a given set of similar states. When this assumption
holds, then generalizing from previous experiences can
greatly reduce the number of states that need to be visited,
during trials, to learn an accurate policy. Also, CBR meth-
ods are comparatively simple to encode, intuitive, and have
a good performance record for assisting with reinforcement
learning (e.g., Ram & Santamaria, 1997; Sharma et al.,
2007; Molineaux et al., 2008).

Copyright © 2009, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Unfortunately, CBR methods are not a panacea; they
provide only one part of a solution to this problem. For
example, like reinforcement learning algorithms (Barto &
Mahadevan, 2003) they learn slowly when state descrip-
tions have high dimensionality because this complicates
the task of identifying similar cases. Thus, they can benefit
from techniques that reformulate the state space to address
this problem (e.g., Aha, 1991; Fox & Leake, 2001).

One method for reformulating the state space involves
using plan recognition (Sukthankar, 2007) to reveal hidden
variables (e.g., concerning opponent intent), which can
then be incorporated into the state space used by learning
algorithms. This has the potential to transform a partially
observable environment into a fully observable environ-
ment (Russell & Norvig, 2003).

We investigate the utility of a plan recognition method
for reformulating the state space of a case-based rein-
forcement learning algorithm so as to improve its perform-
ance on a complex simulation task. We claim that plan
recognition can significantly increase long-term rewards on
this task, describe an algorithm and its empirical study that
supports this conclusion, hypothesize a reason for its good
performance, and report on its subsequent investigation.

Section 2 describes our task environment, which is a
limited American football game simulation. We then de-
scribe related work in Section 3 before introducing our
case-base reinforcement learner, and its plan recognition
extensions, in Section 4. Our empirical study, results anal-
ysis, and subsequent investigation are described in Section
5. We discuss these in Section 6 and conclude in Section 7.

2. Domain and Performance Task
American football1 is a game of skill played by two teams
on a rectangular field. RUSH 20052 is an open-source
American football simulator whose teams have only 8
players and whose field is 100x63 yards. We use a variant
of Rush that we created (RUSH 20083) for our investigation.

1 http://en.wikipedia.org/wiki/American_Football
2 http://rush2005.sourceforge.net/
3 http://www.knexusresearch.com/projects/rush

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Beating the Defense: Using Plan Recognition to Inform Learning Agents

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Knexus Research Corp,9120 Beachway Lane,Springfield,VA,22153

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the Twenty-Second International FLAIRS Conference (pp. 337-343). Sanibel Island, FL:
AAAI Press

14. ABSTRACT
In this paper, we investigate the hypothesis that plan recognition can significantly improve the
performance of a casebased reinforcement learner in an adversarial action selection task. Our environment
is a simplification of an American football game. The performance task is to control the behavior of a
quarterback in a pass play, where the goal is to maximize yardage gained. Plan recognition focuses on
predicting the play of the defensive team. We modeled plan recognition as an unsupervised learning task,
and conducted a lesion study. We found that plan recognition was accurate and that it significantly
improved performance. More generally our studies show that plan recognition reduced the dimensionality
of the state space, which allowed learning to be conducted more effectively. We describe the algorithms,
explain the reasons for performance improvement, and also describe a further empirical comparison that
highlights the utility of plan recognition for this task.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Our investigation involved learning to control the quar-
terback’s actions on repeated executions of the same offen-
sive play (a pass). In this context, the offensive team’s
players are instructed to perform the following actions:
Quarterback (QB): Given the ball at the start of play

while standing 3 yards behind the center of the line of
scrimmage (LOS), our QB agent decides whether and
when he runs, stands, or throws (and to which receiver).

Running Back (RB): Starts 3 yards behind the QB, runs a
pass route 7 yards left and 4 yards downfield.

Wide Receiver #1 (WR1): Starts 16 yards to the left of the
QB on the LOS, runs 5 yards downfield and turns right.

Wide Receiver #2 (WR2): Starts 16 yards to the right of
the QB a few yards behind the LOS, runs 5 yards down-
field, and waits.

Tight End (TE): Starts 8 yards to the right of the QB on
the LOS and pass-blocks.

Offensive Linemen (OL): These 3 players begin on the
LOS in front of the QB and pass-block (for the QB).

In our investigation, the defense always used plays start-
ing from the same formation, and acts as follows:
Defensive lineman (DL): These 2 players line up across

the LOS from the OL and try to tackle the ball handler.
Linebacker (LB): These 2 players start behind the DL,

and will blitz the QB, guard a particular zone of the
field, or guard an eligible receiver (i.e., the RB, WR1,
or WR2), depending on the play.

Cornerback (CB): These 2 players line up across the LOS
from the WRs and guard a player or a zone on the field.

Safety (S): These 2 players begin 10 yards behind the LOS
and assist with pass coverage or chase offense players.

Figure 1 displays the starting formation we used for both
teams in each play. All players pursue a set play based on
their specific instructions (i.e., for the offense, a location to
run to followed by a behavior to execute), except for the
QB, whose actions are controlled by our learning agent.
However, due to the stochastic nature of the simulator, the
play does not unfold the same way each time. Each player
possesses unique skills (specified using a 10-point scale)
including power, speed, and skill; these affect his ability to
handle the ball, block, run, and tackle other players. The
probability that a passed ball is caught is a function of the

number of defenders near the intended ball receiver, the
skills of the ball receiver and the nearby defenders (if any),
and the distance in which the ball was thrown.

The physics of the simulator are simplified. When a
player or the ball starts to move, it takes on a constant ve-
locity, with the exception that the ball will accelerate
downwards due to gravity. All objects are represented as
rectangles that interact when they overlap (resulting in a
catch, block, or tackle).

Within RUSH, we examine the task of learning how to
control the quarterback’s actions so as to optimize yardage
gained on a single (repeated) play. At the start of each
play, the defense secretly and randomly chooses one of
five plays/strategies that begin from the same known for-
mation. These plays are named “Half-and-Half”, “Soft
Covers”, “Pass Blanket”, “Hard Blitz”, and “Pressure RB”.
The offensive team always uses the same passing play, as
detailed above. Only the QB is controlled. The other play-
er’s actions are slightly variable, and they may not run the
same path every time, even though they will follow the
same general directions. This task is stochastic because the
other players’ actions are random within certain bounds. It
is also partially hidden: while each player’s positions and
movements are visible, one of the determinants of those
movements (i.e., the defensive strategy) is not observable.

The QB can perform one of eight actions (see Figure 2)
at each time step during the offensive play. The first four,
Forward, Back, Left, and Right cause the QB to move in
a certain direction for one time step. Three more cause the
QB to pass to a receiver (who is running a pre-determined
pass route): Throw RB, Throw WR1, Throw WR2. Fi-
nally, one action causes the quarterback to stand still for a
time step: Noop. The QB may decide to run the football
himself. The quarterback must choose actions until either
he throws the ball, crosses into the end zone (i.e., scores a
touchdown by gaining 50 yards from the LOS), or is tack-
led. If the QB passes, no more actions are taken, and the
play finishes as soon as an incompletion occurs, an inter-
ception occurs, or the successful receiver has been tackled
or scores a touchdown.

At the start of each play, the ball is placed at the center
of the line of scrimmage (LOS) along the 50 yard line. The
agent’s reward is 1000 for a touchdown (i.e., a gain of at
least 50 yards), -1000 for an interception or fumble, or is
otherwise ten times the number of yards gained (e.g., 0 for
an incomplete pass) when the play ends. A reward of 0 is
received for all actions before the end of the play. Touch-

downs, interceptions, and fumbles are relatively rare.
Touchdowns occur between 0.01% of the time (for a low
performer) and 0.2% of the time (for a high performer).
Interceptions and fumbles combined occur between 1%
and 3% of the time.

3. Related Work
Plan recognition concerns the task of inferring the goals of
an agent and their plan for achieving them (Carberry,
2001). Ours is a simple instantiation of this in which we
know the opponents’ goals (i.e., minimize yardage gained
and gain possession if possible), and few plans are used.

Plan recognition has a long history in CBR research
(e.g., Kass, 1991), particularly in the context of adversarial,
real-time multiagent games. For example, Fagan and Cun-
ningham (2003) acquire cases (state-action planning se-
quences) for predicting a human’s next action while play-
ing SPACE INVADERS. We instead focus on predicting the
actions of a team of coordinating players. Cheng and Tha-
wonmas (2004) propose a case-based plan recognition ap-
proach for assisting players with low-level management
tasks in WARGUS. However, they do not observe the adver-
sary’s tactical movements, which is our focus. Finally, Lee
et al. (2008) use Kerkez and Cox’s (2003) technique to
create an abstract state, which counts the number of in-
stances of each type-generalized state predicate. On a sim-
plified WARGUS task, their integration of CBR with a sim-
ple reinforcement learner performs much better when using
the abstract state representation to predict opponent ac-
tions. While our approach also performs state abstraction,
our states are not described by relational predicates, and
this technique cannot be applied to our task.

Several additional CBR researchers have recently inves-
tigated planning techniques in the context of real-time si-
mulation games (e.g., Aha et al., 2005; Ontañón et al.,
2007; Sugandh et al., 2008). While some employed rein-
forcement learning algorithms (e.g., Sharma et al., 2007;
Molineaux et al., 2008; Auslander et al., 2008), none lev-
eraged plan recognition techniques.

CBR is frequently used in team simulation games such
as ROBOCUP SOCCER (e.g., Karol et al., 2003; Srinivasan et
al., 2006; Ros et al., 2007). Unlike our own, these efforts
have not focused on plan recognition or on alternative ap-
proaches for learning a state representation to enhance re-
inforcement learning behavior. Among more closely-
related work, Wendler and Bach (2003) report excellent
results for a CBR algorithm that predicts agent behaviors
from a pre-defined set. We instead use plan recognition to
assist reinforcement learning, and our opponent’s behav-
iors are instead learned via clustering. Finally, Steffens
(2005) examines the utility of adding virtual features that
model the opponent’s team and showed that, when
weighted appropriately, can significantly increase player
prediction accuracies. However, these features were hand-
coded rather than learned via a plan recognition method.

There has been limited use of clustering to assist with
plan recognition in related tasks. For example, Riley et al.
(2002) use a clustering technique based on fitting minimal

rectangles to player logs of Robocup simulator league data
to identify player home areas. A player's home area is de-
fined as the segment of the field where the player spends
90% of the game time. However, knowing a player's home
area is insufficient to perform state-space reduction. In
general, our use of an EM clustering approach for plan
recognition is fairly unique; most related research focuses
on determining which plan is being executed rather than
the plan’s cluster/category.

Finally, we recently reported successful results when us-
ing a supervised plan recognition approach to predict the
offensive team’s play (Shore et al., submitted), but we did
not use it as leverage in a subsequent learning task, which
is the focus of this paper.

4. Algorithm
Our algorithm is based on the Q(λ) algorithm (Sutton &
Barto, 1998); it uses a set of case bases to approximate the
Q function and an EM clustering algorithm to add oppo-
nent plan information to the state. We call it Case-Based
Q-Lambda with Plan Recognition (CBQL-PR).

4.1 Plan Recognition Task
In CBQL-PR, plan recognition is an online learning task
that clusters the observable movements of all the defensive
players into groups. The perceived movement m∈M for
each defensive player is the direction that player is moving
during a time step, which has nine possible values:

M = {None, Forward, Left, Right, Back, Forward-
Right, Forward-Left, Back-Right, Back-Left}

Directions are geocentric; Forward is always in the
direction of play (downfield), and all other directions are
equally spaced at 45-degree angles. Clustering is per-
formed after the third time step of each play, so three
“snapshots” of the defensive players’ movements are
used. Thus, 24 features are used to represent defensive
plays (i.e., the directions on each of three steps for each
of eight defensive players). For the first 1000 trials, ex-
amples were added to the batch to be clustered, but the
predicted cluster (i.e., the recognized plan) was not used
in action selected.

We used the Expectation-Maximization (EM) algorithm
from the Weka1 suite of machine learning software for
clustering. EM iteratively chooses cluster centers and
builds new clusters until the centers move only marginally
between iterations. Membership of an example in a cluster
is calculated as the product of the within-cluster frequen-
cies of each value in the feature vector. EM also increases
the number of clusters to discover until successive steps
decrease the average log-likelihood of instances in a final
clustering. We selected EM after reviewing several algo-
rithms; the clusters it found matched the defensive plays
over 99% of the time in less than 1000 examples.

1 http://www.cs.waikato.ac.nz/ml/weka/

4.2 Action Selection Task
CBQL-PR periodically selects an action that either maxi-
mizes the expected return (exploiting learned knowledge),
or improves its knowledge of the value space (exploring
the environment) so as to maximize the long-term reward.

CBQL-PR uses a set of case bases to approximate the
standard RL Q function, which maps state-action pairs to
an estimate of the long-term reward for taking an action a
in a state s. There is one Qa case base in this set for each
action a∈A, where A is the set of actions defined by the
environment. These case bases support a case-based prob-
lem solving process consisting of a cycle of case retrieval,
reuse, revision, and retention (Aamodt & Plaza, 1994). For
faster retrieval, we use kd-trees to index cases. At the start
of each experiment, each Qa case base is initialized to the
empty set; cases are added and modified as new experi-
ences are gathered, which provide new local estimates of
the Q function. Cases in Qa are of the form <s, v>, where s
is a feature vector describing the state (it contains a combi-
nation of integer, real, and symbolic values) and v is a real-
valued estimate of the reward obtained by taking action a
in state s and then pursuing the current approximation of
the optimal policy until the task terminates.

At each time step, a state is observed by the agent, and
an action is selected. With probability ε, a random action
will be chosen (exploration). With probability 1-ε, the al-
gorithm will predict the best action to take (exploitation).
To do this, it reuses each Qa case base by performing a
locally-weighted regression using a Gaussian kernel on the
retrieved k nearest neighbors of the current observed state
s. Similarity is computed using a normalized Euclidean
distance function. This produces an estimate of the value of
taking action a in the current observed state s. CBQL-PR
selects the action with the highest estimate, or a random
action if any case base has fewer than 7 nearest neighbors.

Once that action is executed, a reward r and a successor
state s’ are obtained from the RUSH 2008 environment.
This reward is used to improve the estimate of the Q func-
tion. If the case is sufficiently novel (more than a distance
τ from its nearest neighbor) a new case is retained in Qa
with state s and v = r + γ maxa∈A Qa’(s’) , where Qa’() de-
notes the current estimate for a state in Qa and 0≤γ<1 is the
discount factor. This update stores an estimate of the value
of taking action a in state s based on the known value of
the best successor state and action. If the case is not suffi-
ciently novel, the 7 nearest neighbors are revised according
to the current learning rate α and their contribution β to the
estimate of the state’s value (determined by a normaliza-
tion over the Gaussian kernel function, summing to 1). The
solution of each case is updated using:

v = v + αβ [r + γ maxa∈A Qa’(s’) – Qa(s)].
Finally, the solutions (values) of all cases updated earlier in
the current trial are updated according to their λ-eligibility:

v = v + (γλ)tαβ [r + γ maxa∈A Qa’(s’) – Qa(s)],
where t is the number of steps between the earlier use and
the current update, and 0≤λ<1 is the trace decay parameter.

4.3 State Definitions
In addition to CBQL-PR, we investigate two non-
clustering variants of the algorithm which do not perform
plan recognition, CBQLbase and CBQLopt; they differ only
in their representation of the state. CBQLbase uses the time
step and eight features from the set M described in Section
4.1 (i.e., the directional movements of the eight defensive
players for the most recent time step), In contrast, CBQL-
PR instead uses only the predicted cluster and the time
step. Before its third turn, CBQL-PR’s second feature
takes on a distinct value indicating no prediction. We com-
pared CBQL-PR with CBQLbase to examine whether clus-
tering improves CBQL-PR’s performance over RL alone.

CBQLopt uses an optimized 5-dimensional state descrip-
tion which includes four real-valued features that are intui-
tively helpful in the QB’s decisions of when and where to
throw. It uses three features to indicate each eligible re-
ceiver’s distance from the nearest defensive player (indi-
cating how well each is covered). A fourth feature denotes
the QB’s distance from the closest defensive player (indi-
cating the likelihood that he will be tackled imminently).
The final feature is the current time step. This state repre-
sentation more closely resembles a conventional RL state,
containing features selected for easy disambiguation of the
right action to use, rather than capturing opponent plans.
See Table 1 for more details.

5. Evaluation
Our empirical study focuses on analyzing how the state
representation affects the performance of a case-based Q(λ)
algorithm on a task in RUSH 2008. We hypothesized that
clustering via plan recognition would yield a state repre-
sentation that significantly improves performance. We
used the experimentation platform LIET, the Lightweight
Integration and Evaluation Testbed. LIET is a free tool we
developed that can be used to evaluate the performance of
agents on tasks in integrated simulation environments.
LIET managed communication between RUSH 2008 and
CBQL, ran the experiment protocol, and collected results.

We assessed performance in terms of two metrics: as-
ymptotic advantage and regret. Aysmptotic advantage is
defined as the difference between the asymptotic perform-
ances of two algorithms, which we compute by averaging
the performance achieved during the final 10 testing peri-
ods. The second metric, regret (Kaelbling et al., 1996), is
the integral difference between the performance curves of
two algorithms. To normalize, the regret is divided by a
bounding box defined by the most extreme values in each

dimension from both curves. The domain metric measured
is the total reward, as defined in Section 2.

We compared three variants of the learning algorithm,
each using one of the different state representations defined
in Section 4.3. In particular, only CBQL-PR employs a
plan recognition method. For each algorithm, we used the
following values for the constants to update the case base:
learning rate α=0.2, discount factor γ=0.999, exploration
parameter ε=0.2, trace decay λ=0.9, neighbor count k=7,
and distance threshold τ=0.001. Both α and ε were de-
creased asymptotically to 0 over time.

Each algorithm variant was tested against the same set
of five defensive plays. Each of these plays denotes a dif-
ferent set of behaviors for the defensive team, and for each
play, there is a distinct optimal offensive strategy. As the
environment is stochastic, a series of actions may produce
different rewards if attempted on successive trials.

We ran ten replications of our experiment for each
agent. Experiments lasted for 100,000 training trials, with a
random defensive strategy selected at the beginning of
each training trial. After every 250 training trials, we
tested the algorithm ten times against each defensive strat-
egy. Each point in Figure 3 is the average performance
over one testing period. On average, CBQL-PR found
more clusters than actual plays; the mean was 6.6. How-
ever, no cluster corresponded to more than one play;
rather, multiple clusters sometimes were found correspond-
ing to the same play. Also, predictions were found to be
accurate 100% of the time in the limit; each time a particu-
lar cluster was predicted, the defense was using the same
play.

The results confirm our hypothesis that pattern recogni-
tion can significantly improve the performance of case-
based RL on this task. That is, CBQL-PR significantly
outperformed CBQLbase and CBQLopt in k-step regret (vs.
CBQLbase=.578, p <.0001 and vs. CBQLopt= .271, p<.0001)
and asymptotic advantage (vs. CBQLbase=82.9, p<.0001
and vs. CBQLopt=39.0, p<.0001).

A key distinguishing characteristic between CBQL-PR
and its variants is its smaller state dimensionality (i.e., two
rather than five or nine). To test the hypothesis that this is
not the sole reason for its improved performance, we also
evaluated CBQLrandom, a variant whose first feature is ran-

domly chosen from the interval [1, # defensive plays], and
whose second feature is the time step (results in Figure 4).
CBQL-PR statistically outperforms this version also (re-
gret vs. CBQLrandom=.272, p<.0001; asymptotic advantage
vs. CBQLrandom=46.5, p<.0001), confirming our hypothesis.

6. Discussion
We showed that using recognized plans in the state repre-
sentation improves the performance of our case-based rein-
forcement learning algorithm on a simulated American
football task. We compared the performance of our algo-
rithm using multiple representations, and the version using
plan recognition achieves the highest asymptotic perform-
ance. It also learns more quickly, achieving the highest
performance found by the runner-up in 10% of the time.
 This performance improvement is primarily due to two
advantages of CBQL-PR’s state space formulation. The
first is its lower dimensionality, while the second is that the
opponent’s plans, which are important in explaining varia-
tions in performance, are identified.

While useful, this algorithm does not dominate in all sit-
uations. Other experiments (not discussed in this paper),
showed that CBQL-PR does not outperform CBQLopt
against all possible defenses. In particular, when a single
series of actions performs well against all defenses,
CBQLopt performs as well as or better than CBQL-PR.
However, CBQL-PR may perform well in other domains
where broader opponent strategies can be grouped into sets
to be understood better. In future work, we will test CBQL-
PR against a larger range of opponent strategies. We will
also extend our work to cover the full game of American
football, including choice of offensive play with different
starting conditions (e.g., distance from goal). Also, we will
investigate learning a more detailed representation of
plays, which will allow us to generalize over similar plays.

7. Conclusions
Plan recognition methods can be a powerful ally for ma-
chine learning techniques. We investigated the utility of a
clustering algorithm for distinguishing opponent plans in a
multi-agent simulation of plays from an American football

game. By replacing a low-level feature representation with
a learned, accurate prediction of the opponent’s plan, this
type of plan recognition can significantly increase the per-
formance of a case-based reinforcement learner on an
agent control task. We conjecture that similar approaches
can improve the performance of learning algorithms on a
large variety of tasks, and in particular for tasks that can
benefit from the predictions of other agents’ actions.
Acknowledgements
Thanks to DARPA (#07-V176) and the Naval Research
Laboratory for supporting this work, and to the reviewers
for their helpful comments.

References
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Founda-

tional issues, methodological variations, and system ap-
proaches. AI Communications, 7, 39-59.

Aha, D.W. (1991). Incremental constructive induction: An in-
stance-based approach. Proceedings of the Eighth Interna-
tional Workshop on Machine Learning (pp. 117-121).
Evanston, IL: Morgan Kaufmann.

Aha, D.W., Molineaux, M., & Ponsen, M. (2005). Learning to
win: Case-based plan selection in a real-time strategy game.
Proceedings of the Sixth International Conference on Case-
Based Reasoning (pp. 5-20). Chicago, IL: Springer.

Auslander, B., Lee-Urban, S., Hogg, C., & Muñoz-Avila, H.
(2008). Recognizing the enemy: Combining reinforcement
learning with strategy selection using case-based reasoning.
Proceedings of the Ninth European Conference on Case-Based
Reasoning (pp. 59-73). Trier, Germany: Springer.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hier-
archical reinforcement learning. Discrete Event Dynamic Sys-
tems, 13(4), 341–379.

Carberry, S. (2001). Techniques for plan recognition. User Mod-
eling and User-Adapted Interaction, 11(1-2), 31-48.

Cheng, D.C., & Thawonmas, R. (2004). Case-based plan recogni-
tion for real-time strategy games. Proceedings of the Fifth
Game-On International Conference (pp. 36-40). Reading, UK:
University of Wolverhampton Press.

Fagan, M., & Cunningham, P. (2003). Case-based plan recogni-
tion in computer games. Proceedings of the Fifth International
Conference on Case-Based Reasoning (pp. 161-170). Trond-
heim, Norway: Springer.

Fox, S. & Leake, D. (2001). Introspective reasoning for index
refinement in case-based reasoning. Journal of Experimental
and Theoretical Artificial Intelligence, 13(1), 63-88.

Kaelbling, L.P., Littman, M.L., & Moore, A.W. (1996). Rein-
forcement learning: A survey. JAIR, 4, 237-285.

Karol, A., Nebel, B., Stanton, C., & Williams, M.-A. (2003).
Case based game play in the RoboCup four-legged league: Part
I the theoretical model. In D. Polani, B. Browning, A. Bon-
arini, & K. Yoshida (Eds.) RoboCup 2003: Robot Soccer
World Cup VII (pp. 739-747). Padua, Italy: Springer.

Kass, A. (1991). Adaptation strategies for case-based plan recog-
nition. Proceedings of the Thirteenth Annual Conference of the
Cognitive Science Society (pp. 161-166). Chicago, IL: Law-
rence Erlbaum Associates.

Kerkez, B., & Cox, M.T. (2003). Incremental case-based plan
recognition with local predictions. International Journal on

Artificial Intelligence Tools: Architectures, languages, algo-
rithms, 12(4), 413-464.

Lee, J., Koo, B., & Oh, K. (2008). State space optimization using
plan recognition and reinforcement learning on RTS game. In
Proceedings of the International Conference on Artificial In-
telligence, Knowledge Engineering, and Data Bases. Cam-
bridge, UK: WSEAS Press.

Molineaux, M., Aha, D.W., & Moore, P. (2008). Learning con-
tinuous action models in a real-time strategy environment.
Proceedings of the Twenty-First Annual Conference of the
Florida Artificial Intelligence Research Society (pp. 257-262).
Coconut Grove, FL: AAAI Press.

Ontañón, S., Mishra, K., Sugandh, N., & Ram, A. (2007). Case-
basd planning and execution for real-time strategy games. Pro-
ceedings of the Seventh International Conference on Case-
Based Reasoning (pp. 164-178). Belfast, N. Ireland: Springer.

Ram, A., & Santamaria, J.C. (1997). Continuous case-based rea-
soning. Artificial Intelligence, 90(1-2), 25-77.

Riley, P., Veloso, M., & Kaminka, G. (2002). An empirical study
of coaching. In H. Asama, T. Arai, T. Fukuda, & T. Hasegawa
(Eds.) Distributed Autonomous Robotic Systems 5. Berlin:
Springer.

Ros, R., López de Mántaras, R., Arcos, J.L., & Veloso, M.M.
(2007). Team playing behavior in robot soccer: A case-based
reasoning approach. Proceedings of the Seventh International
Conference on Case-Based Reasoning (pp. 46-60). Belfast, N.
Ireland: Springer.

Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern
approach (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

Sharma, M., Holmes, M., Santamaria, J.C., Irani, A., Isbell, C., &
Ram, A. (2007). Transfer learning in real-time strategy games
using hybrid CBR/RL. In Proceedings of the Twentieth Inter-
national Joint Conference on Artificial Intelligence.
[http://www.ijcai.org/papers07/contents.php]

Srinivasan, T., Aarthi, K., Meenakshi, S.A., & Kausalya, M.
(2006). CBRRoboSoc: An efficient planning strategy for ro-
botic soccer using case-based reasoning. In Proceedings of the
International Conference on Computational Intelligence for
Modelling Control and Automation and the International Con-
ference on Intelligent Agents, Web Technologies, and Internet
Commerce. Sydney, Australia: IEEE Press.

Steffens, T. (2005). Similarity-based opponent modelling using
imperfect domain theories. (2005). In G. Kendall & S. Lucas
(Eds.) Proceedings of the Symposium on Computational Intel-
ligence and Games (pp. 285-291). Essex, UK: IEEE Press.

Sugandh, N., Ontañón, S., & Ram, A. (2008). Real-time plan
adaptation for case-based planning in real-time strategy games.
Proceedings of the Ninth European Conference on Case-Based
Reasoning (pp. 533-547). Trier, Germany: Springer.

Sukthankar, G. (2007). Activity recognition for agent teams
(Technical Report CMU-RI-TR-07-23). Doctoral dissertation:
Robotics Institute, Carnegie Mellon U., Pittsburgh, PA.

Shore, H.L., Blues, J.J.E., & Blues, E.J. (submitted). Recognizing
opponent intent in Rush Football. Manuscript submitted for
publication.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An in-
troduction. Cambridge, MA: MIT Press.

Wendler, J., & Bach, J. (2003). Recognizing and predicting agent
behavior with case-based reasoning. In D. Polani, B. Brown-
ing, A. Bonarini, & K.Yoshida (Eds.) RoboCup 2003: Robot
Soccer World Cup VII (pp. 729-738). Padua, Italy: Springer.

